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Objective

NASA primarily relies on custom written codes to analyze
ablation and design TPS systems

The basic modeling methodology was developed
50 years ago

Through the years, CFD, thermal, and structural
mechanics calculations have migrated from custom, user-
written programs to commercial software packages

Objective is to determine that a commercial finite
element code can accurately and efficiently solve
pyrolyzing ablation problems



Advantages of Commercial Codes

e Usability (e.g. GUI)

* Built=in pre- and post-processing
* Built-in grid generation

e Efficient solution algorithms

 Multi-dimensional capability (planar, cylindrical, 1-D,
2-D, & 3-D)

e Built in function capability (predefined, analytic, and tabular)
e Validated by a wide user base

* Reduced life cycle cost

* Regular upgrades and maintenance

* Modeling flexibility

e Better documentation



Finite-Element Program Choice

COMSOL Multiphysics® chosen as simulation platform
General-purpose software platform
— Developed to handle wide variety of modeling physics

— Allows arbitrarily inclusions of differential and algebraic
modeling equations in domains, along boundaries, and at points

Solvers based on advanced numerical methods

Arbitrary Lagrangian-Eulerian (ALE) capability (moving boundary)
Dynamic grid reallocation

Flexible solution algorithms (fully coupled and sequential)
Provides coupling between physical phenomena

Incorporates automation and optimization capabilities

Unified user interface (formulation, gridding, plotting, animation, &
reporting)



Example Uses of Pyrolyzing Ablator




General Problem lllustration
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Modeling Requirements for Pyrolyzing Ablators

Non-linear heat conduction in solids

Non-linear, thermal boundary conditions

Moving boundaries

Non-linear, time-dependent quasi-solid in-depth reactions

Transport and thermal properties as a function of material
state as well as temperature

Inclusion of the thermal effects of gas flow within the solid
material

In-depth pore pressure due to pyrolysis gas transport (not
always employed)



Decomposition Model

Material consists of three constituents (although the number
could be increased)

p =T(pa+pp)+ (1 —TD)pc
Components A and B decompose according to:
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Material properties are a function not only of temperature,
but also material state




Temperature History

* |n-depth temperature time history can come from:
— Thermogravimetric Analysis (TGA)

— Steady-State energy balance (1-D transformed coordinate)
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— Transient energy balance (1-D transformed coordinate)
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— Transient Energy Balance (2-D fixed coordinate)
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Material Selection

 For comparisons, utilize Theoretical Ablative
Composite for Open Testing (TACOT) Material
Properties

* Open, simulated pyrolyzing ablator that has been used

a baseline test case for modeling ablation and
comparing various predictive models

* Properties Required

— Solid virgin and char specific heat, enthalpy, thermal
conductivity, absorptivity and emissivity

— Pyrolysis gas enthalpy

— Surface thermochemistry mass loss and gas phase
enthalpy



Thermophysical
properties defined
separately for virgin and
char constituents.
Composite properties
determined by mixing
rule based on mass.
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Material Enthalpy
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Pyrolysis gas enthalpy
computed from
equilibrium
thermochemistry as a
function of
temperature and
pressure.
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Surface
thermochemistry
conditions
computed from
equilibrium
thermochemistry in
terms of normalized
mass fluxes.

B, = mc/peueCM
Bé = Mg /PelleCy

Bc = Be(p, By, T5)
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Surface Thermochemistry —Gas Phase Enthalpy
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Example Problems

* Look at four examples
— Thermogravimetric Analysis (TGA)

— Steady-state one-dimensional thermal and density
profile

— One-dimensional transient temperature and
recession history

— Two-dimensional transient temperature and
recession history



Thermogravimetric Analysis (TGA) Example
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Thermogravimetric Analysis (TGA) Example

Three component TACOT model
Linear ramp increase in temperature at 10 K/s
First-order time integration, not a spatial problem

Results provide density and reaction rate for three
components as a function of time

COMSOL Multiphysics® results compared to independent
fourth-order Runge-Kutta calculation
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TGA Results - 1l
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Steady-State Profile Example
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Steady-State Profile Example

After long times in an infinite sample with a fixed surface
temperature and recession, temperature and density profile
will reach a steady state

Problem solution becomes independent of time

For this problem, specified surface temperature (3000 K) and
recession rate (1x10“ m/s) was used

COMSOL Multiphysics® results compared to independent
second order finite difference calculation and results from the
Fully Implicit Ablation and Thermal Analysis Program (FIAT)



Finite Difference Temperature Profile Comparison
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One-Dimensional Transient Example
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One-Dimensional Transient Example

Problem is for a planar, finite width slab heated on one
surface

Full surface thermochemistry

COMSOL Multiphysics® results compared to FIAT results
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Mass Loss Rate, kg/m?2-s

Char and Pyrolysis Surface Mass Loss Rates
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Two-Dimensional Transient Example
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Problem is for a two-
dimensional, axisymmetric
puck

Top of puck heated with
Gaussian flux profile

Pyrolysis gas flow calculated
from potential flow

Full surface thermochemistry
with recession

2-D COMSOL Multiphysics®
results compared to a series
of 1-D results

Two-Dimensional Transient Example
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Original and Deformed Mesh
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Summary

This work has demonstrated that a commercial finite element
code is a suitable tool for modeling pyrolyzing ablative
materials

General capabilities of COMSOL Multiphysics® allow for a
wide variety of geometries and problems to modeled

Code allows for modifications to model to be made quickly
and easily

Advanced solution algorithms are efficient and stable

Integrated environment provides a very user friendly and
powerful system for modeling

Multiphysical modeling capability allows for structural end
external flow to be incorporated into analysis (in progress)



